Perturbation Theory and "Quasi-Lone Pairs" in Main Group Angular and Trigonal Pyramidal Compounds

Evgeny Shustorovich* and Paul A. Dobosh
Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14853, and the Department of Chemistry, Mount Holyoke College. South Hadley, Massachusetts 01075. Received February 5, 1979

Abstract

An analytical LCAO MO perturbation approach has been developed for treating the electronic structure and some properties of octet angular $A L_{2}$ and trigonal pyramidal $A L_{3}$ compounds where the main group atom A is not of highest oxidation state, A(NHOS), and has a "quasi-lone pair", (QLP). The formation of a QLP has been considered as an orthogonalization problem for the three-orbital four-electron ($30-4 \mathrm{e}$) valence interactions within the A_{1} irreducible representation of the $A L_{m}$ compounds in question. The criteria of a QLP such as localization, sp^{q} hybridization, and bonding character have been discussed. It has been shown that the chemically and sterically active QLPs always correspond to the $2 \mathrm{a}_{1}$ MOs with the nodal structure resulting in s antibonding and p bonding contributions to the $A-L$ bond strengths. For this reason the QLPs may be bonding, nonbonding, or antibonding depending on the relative values of the opposing s and p contributions so that changes of the initial AL_{m} molecular properties under coordination $L_{m} \mathrm{~A} \rightarrow \mathrm{X}$ may be different depending on A, L, and the properties themselves. It has been shown that by the proper sp orthogonalization the electronic structure of the mentioned $\mathrm{A}(\mathrm{NHOS})$ molecules can be reduced to the $40-4 \mathrm{e}$ bonding which is typical for linear $A L_{2}$ and trigonal planar $A L_{3}$ molecules where A is of the highest oxidation state, $\mathrm{A}(\mathrm{HOS})$, and which has been considered earlier. The energy orders, composition, and nodal structures of the LCAO MOs as well as the effects of substitution of L by L' on the A-L bond strengths (lengths) have been presented in explicit form and agree with the known experimental and computational data. The developed model permits the fundamental regularities of the electronic structures and properties of the octet $A L_{2}$ and $A L_{3}$ molecules to be explained and predicted.

Introduction

The "lone pair" represents one of the most fundamental and widely used concepts in chemistry, being invoked to explain a variety of phenomena, for example, the donor ability of Lewis bases such as PR_{3} compounds or the shapes of AL_{m} molecules, where A is not of the highest oxidation state, $\mathrm{A}($ NHOS $)$, through the VSEPR theory. ${ }^{1}$ Clearly, then, it is important to realize that the nature of a lone pair is as dependent upon the molecule holding it as are the molecular bonds. Let us define a pure lone pair in a compound EL_{m} as an occupied MO formed from AOs on either the central atom E or ligands L , only. Such pure lone pairs, e.g., the oxygen p_{π} lone pair in water $\left(1 b_{1}{ }^{2}\right)$, arise only as a consequence of symmetry and for the most part chemists deal with "quasi"-lone pairs (QLPs), i.e., MOs made up predominantly of orbitals located on the central atom or ligands.

Unlike pure lone pairs which are, by definition, nonbonding MOs and usually nonhybridized atomic orbitals (p_{π} or d_{π} in the A(NHOS) or transition metal Md^{n} cases, respectively), the QLPs may be of any bonding and hybrid character. Numerous misunderstandings appear in the chemical literature arising from a failure to consider the detailed orbital characteristics of QLPs in particular molecules. ${ }^{2-4}$ Hall ${ }^{2}$ has recently pointed out flaws in the VSEPR theory ${ }^{1}$ based on incorrect assertions about QLPs. Hall's calculations on $\mathrm{H}_{2} \mathrm{O}^{2 b}$ show that "the driving force for the formation of these hybrids is . . . the system's desire to keep the lower energy 2 s orbital as fully occupied as possible, i.e., as a lone pair." This conclusion is hardly compatible with the common assumption that in the valence MO configuration of $\mathrm{H}_{2} \mathrm{O} C_{2 v} 1 \mathrm{a}_{1}{ }^{2} 1 \mathrm{~b}_{2}{ }^{2} 2 \mathrm{a}_{1}{ }^{2} 1 \mathrm{~b}_{1}^{2}$ the highest a_{1} orbital, $2 \mathrm{a}_{1}$, corresponds to the QLP. ${ }^{3}$ Indeed, according to generalized valence bond calculations on $\mathrm{H}_{2} \mathrm{O},{ }^{5} 1 \mathrm{a}_{1}$ is about 82% oxygen 2 s. Similarly, ab initio LCAO MO calculations ${ }^{6}$ show la a_{1} practically nonbonding but $2 a_{1}$ almost as strongly bonding as $1 \mathrm{~b}_{2}$ (the overlap populations are $0.034,0.202$, and 0.331 , respectively ${ }^{6}$). The experimental data, ${ }^{7}$ especially the vibrational structures of the photoelectron spectra, ${ }^{7,8}$ confirm

[^0]these conclusions. At the same time in $\mathrm{F}_{2} \mathrm{O}$ the lowest a_{1} valence orbital is strongly bonding (the overlap population is 0.202^{6}). The composition, bonding, and directional properties of the a_{1} QLPs in various octet AL_{3} compounds where there are no pure lone pairs at all are even more complicated (see below).

Current qualitative models assuming the same QLP pattern for a given polyhedron AL_{m}, either the pure s or some hybrid sp^{4} orbital, ${ }^{1,2,9,10}$ fail to embrace this variety and can lead chemists astray. Quantitative, ab initio LCAO MO and more sophisticated, ${ }^{4}$ calculations, on the other hand, do not provide a generalizable set of rules for QLP structure and, in particular, provide no model for predicting substituent effects as we move away from AL_{m} compounds. Recently we have developed an analytical perturbation LCAO MO approach ${ }^{11-14}$ for treating substituent effects on bond lengths (strengths) ${ }^{11,12}$ and spin coupling constants ${ }^{13,14}$ for the most common geometries such as linear, trigonal planar, tetrahedral, ${ }^{11,13,14}$ square, octahedral, ${ }^{12,14}$ etc. In this and another ${ }^{15}$ papers a similar perturbation treatment of QLPs will be presented which we hope will provide a convenient and consistent model for various QLP effects.

Results and Discussion

Composition and Nodal Structures of the A_{1} Valence Orbitals. Table I presents examples of QLPs from several parts of the periodic table and under several symmetries. The common feature of all this variety is that within each A_{1} representation there are three delocalized valence orbitals

$$
\begin{equation*}
\psi_{i}\left(i \mathrm{a}_{1}\right)=c_{i 1} \chi_{1}+c_{i 2} \chi_{2}+c_{i 3} \chi_{3}, i=1,2,3 \tag{1}
\end{equation*}
$$

where the lowest MOs ψ_{1} and ψ_{2} are occupied but ψ_{3} is vacant. It is obvious that ψ_{1} has no nodes, ψ_{3} has $t w o$ nodes, and ψ_{2} has one node, but the problem is to locate this node. The threeorbital, four-electron (30-4e) problem has been discussed in detail elsewhere ${ }^{11}$ but we want to consider its peculiarities for octet AL_{2} and AL_{3} molecules.

The general (3×3) determinant (1) can be represented as a perturbation of some reduced $(2 \times 2)+(1 \times 1)$ determinantal form. In particular, in our consideration of QLPs we

Table I. Some Examples of Quasi-Lone Pairs

compd	symmetry	irreducible representation	interacting orbitals		lone pair ${ }^{a}$	
			E	L	orbital	location
$\mathrm{H}_{2} \mathrm{O}$	$C_{2 c}$	A_{1}	s	$\sigma^{(+)}=(1 / \sqrt{2})\left(\sigma_{1}+\sigma_{1}\right)$	ν S $-\mu \mathrm{p}$ \%	central atom
NH_{3}	$C_{3 c}$	A_{1}	p_{z}	$\begin{aligned} & \sigma^{(+)}=(1 / \sqrt{3})\left(\sigma_{1}+\sigma_{2}\right. \\ & \left.\quad+\sigma_{3}\right) \end{aligned}$	$\nu \mathrm{S}-\mu \mathrm{p}_{z}$	central atom
$\mathrm{PtCl}_{4}{ }^{2-}$	$D_{4 h}$	$A_{1 g}$	$\begin{aligned} & \mathrm{p}_{2} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} \sigma^{(+)} & =1 / 2\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right. \\ & \left.+\sigma_{4}\right) \end{aligned}$	$\mu \mathrm{s}+\nu \mathrm{d}_{2}{ }^{2}$	central atom
PF_{5}	$D_{3 h}$	A_{1}	d_{z}	$\begin{aligned} & \sigma_{\mathrm{ax}}{ }^{(+)}=(1 / \sqrt{2})\left(\sigma_{1}+\right. \\ & \left.\sigma_{2}\right) \\ & \sigma_{\mathrm{eq}}{ }^{(+)}=(1 / \sqrt{3})\left(\sigma_{3}+\right. \\ & \left.\sigma_{4}+\sigma_{5}\right) \end{aligned}$	$\begin{aligned} & \sqrt{3 / 10}\left(\sigma_{1}+\sigma_{2}\right)-\sqrt{2 / 15}\left(\sigma_{3}+\right. \\ & \left.\sigma_{4}+\sigma_{5}\right) \end{aligned}$	ligands
$1 F_{7}$	$D_{5 h}$	A_{1}	s	$\begin{gathered} \sigma_{\mathrm{ax}^{(+)}}^{\sigma_{2}}=(1 / \sqrt{2})\left(\sigma_{1}+\right. \\ \sigma_{\mathrm{eq}}^{(+)}=(1 / \sqrt{5})\left(\sigma_{3}+\right. \\ \left.\sigma_{4}+\ldots+\sigma_{7}\right) \end{gathered}$	$\begin{aligned} & \sqrt{5 / 14}\left(\sigma_{1}+\sigma_{2}\right)-\sqrt{2 / 35}\left(\sigma_{3}+\right. \\ & \left.\sigma_{4}+\ldots+\sigma_{7}\right) \end{aligned}$	ligands

${ }^{a}$ See explanations in the text.
would like to separate the (3×3) determinant into a (2×2) part which produces a bonding and antibonding pair and a (1 $\times 1$) part representing the pure lone pair (remember that only for symmetry determined lone pairs does this breakup occur naturally). In carrying out the $(3 \times 3) \rightarrow(2 \times 2)+(1 \times 1)$ reduction, one can start with any reasonable guess about the nature of the lone pair and correct for deficiencies by allowing the (2×2) and (1×1) determinants to interact via perturbation theory. What we want to demonstrate, however, is that a particular choice for the form of the lone pair will allow us to neglect the $(2 \times 2)+(1 \times 1)$ interaction yet still retain a rigorous enough model for examining the effects of lone pairs on substituent effects (bond lengths, spin coupling constants, and so on).

Before presenting our general solution, let us first consider two extremes for lone pairs in octet AL_{2} and AL_{3} molecules. In the first extreme the p_{A} and $\sigma^{(+)}$orbitals (see Table I) are close in energy and lie much higher than the s_{A} one. In the second extreme the s_{A} and $\sigma^{(+)}$orbitals are close in energy and lie much lower than the p_{A} one. The former is represented by $\mathrm{H}_{2} \mathrm{O}$ where both experiment ${ }^{7,8}$ and ab initio calculations ${ }^{2 b, 5,6,17,18}$ show the QLP to be $1 a_{1}$ and predominantly $2 \mathrm{~s}^{2}$. The latter is a more idealized case because along the series O \rightarrow Te and $\mathrm{N} \rightarrow \mathrm{Sb}$ the $n \mathrm{~s}_{\mathrm{A}}-n \mathrm{p}_{\mathrm{A}}$ energy splittings rapidly decrease, the s_{A} orbital energies increasing (decreasing in absolute value) much faster than the p_{A} ones. ${ }^{25 a}$ For P, which will be of special interest in this and another ${ }^{15}$ paper, the $3 \mathrm{~s}-3 \mathrm{p}$ splittings is ca. $6 \mathrm{eV} .{ }^{8,19,20}$ Nevertheless, PF_{3} as well as many other PR_{3} and AL_{3} compounds are close to the second extreme where the QLP should be $2 a_{1}$ and mainly of p character, which agrees with both experiment ${ }^{7,8,19,26}$ and ab initio calculations. ${ }^{16,18-20.26,27}$

In the first case we can start with

$$
\begin{gather*}
\psi_{3}=f \mathrm{p}_{z}-e \sigma^{(+)} \tag{2}\\
\psi_{2}=e \mathrm{p}_{z}+f \sigma^{(+)} \tag{3}\\
\psi_{1}=\mathrm{s} \tag{4}\\
\epsilon_{1}\left(\psi_{1}\right)<\epsilon_{2}\left(\psi_{2}\right)<\epsilon_{3}\left(\psi_{3}\right) \tag{5}
\end{gather*}
$$

and consider the interaction of $\psi_{1}=\mathrm{s}$ with ψ_{2} and ψ_{3} as a perturbation. In the second case we can start with

$$
\begin{gather*}
\psi_{3}=b \mathrm{~s}-a \sigma^{(+)} \tag{6}\\
\psi_{2}=\mathrm{p}_{z} \tag{7}\\
\psi_{1}=a \mathrm{~s}+b \sigma^{(+)} \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
\left|\epsilon_{2}-\epsilon_{3}\right| \ll\left|\epsilon_{2}-\epsilon_{1}\right|, a \simeq b \tag{9}
\end{equation*}
$$

and consider the interaction of $\psi_{2}=p_{2}$ with ψ_{1} and ψ_{3} as a perturbation. Introducing for AL_{m} the relevant parameters

$$
\begin{gather*}
\sqrt{m} x_{i}^{(\mathrm{s})}=\frac{\left(\mathrm{s}|H| \sigma^{(+)}\right\rangle}{\epsilon_{1}-\epsilon_{i}}>0, i=2,3 \tag{10}\\
\sqrt{m} x_{i}^{(\mathrm{p})}=\left|\frac{\left(\mathrm{p} z|H| \sigma^{(+)}\right\rangle}{\epsilon_{2}-\epsilon_{i}}\right|>0, i=1,3 \tag{11}
\end{gather*}
$$

we obtain, to first order,

$$
\begin{gather*}
\psi_{3}^{\prime}=f \mathrm{p}_{z}-e \sigma^{(+)}+\sqrt{m} e x_{3}{ }^{(\mathrm{s})} \mathrm{s} \\
\psi_{2}^{\prime}=e \mathrm{p}_{z}+f \sigma^{(+)}-\sqrt{m} f x_{2}^{(\mathrm{s})} \mathrm{s} \\
\psi_{1}^{\prime}=\mathrm{s}+\sqrt{m}\left[f^{2} x_{2}^{(\mathrm{s})}+e^{2} x_{3}^{(\mathrm{s})}\right] \sigma^{(+)} \\
+\sqrt{m} e f\left[x_{2}^{(\mathrm{s})}-x_{3}^{(\mathrm{s})}\right] \mathrm{p}_{z}
\end{gather*}
$$

and

$$
\begin{gather*}
\psi_{3}^{\prime}=b \mathrm{~s}-a \sigma^{(+)}+\sqrt{m} a x_{3}{ }^{(\mathrm{p})} \mathrm{p}_{z} \\
\left.\psi_{2}^{\prime}=\mathrm{p}_{z}-\sqrt{m} a b\left[x_{1} \mathrm{p}\right)+x_{3}^{(\mathrm{p})}\right] \mathrm{s} \\
+\sqrt{m}\left[a^{2} x_{3}{ }^{(\mathrm{p})}-b^{2} x_{2}{ }^{(\mathrm{p})}\right] \sigma^{(+)} \\
\psi_{1}^{\prime}=a \mathrm{~s}+b \sigma^{(+)}+\sqrt{m} b x_{2}{ }^{(\mathrm{p})} \mathrm{p}_{z}
\end{gather*}
$$

both sets possessing the same nodal structures

$$
\begin{gather*}
\psi_{3}^{\prime}=\mathrm{s}+\mathrm{p}_{z}-\sigma^{(+)} \tag{12}\\
\psi_{2}^{\prime}=-\mathrm{s}+\mathrm{p}_{z}+\sigma^{(+)} \tag{13}\\
\psi_{1}^{\prime}=\mathrm{s}+\mathrm{p}_{z}+\sigma^{(+)} \tag{14}
\end{gather*}
$$

i.e., $\psi_{1}{ }^{\prime}$ has no nodes, $\psi_{3}{ }^{\prime}$ has two nodes, and $\psi_{2}{ }^{\prime}$ has one node which corresponds to p_{z} bonding and s antibonding, in complete agreement with the ab initio calculations on $\mathrm{H}_{2} \mathrm{O},{ }^{17}$ $\mathrm{NH}_{3},{ }^{21}$ and other molecules ${ }^{18}$ (see below).

From (4') we can anticipate that in the QLP $1 \mathrm{a}_{1}$ the admixture of $\sigma^{(+)}$should be larger than that of p_{2}, again in agreement with the ab initio calculations on $\mathrm{H}_{2} \mathrm{O} .{ }^{6,17,18}$ It is obvious that the lower is s_{A} the smaller is the difference $x_{2}{ }^{(\mathrm{s})}$ $-x_{3}{ }^{(\mathrm{s})}>0$, so that in the limit

$$
\begin{equation*}
x_{2}^{(\mathrm{s})}=x_{3}^{(\mathrm{s})}=x_{\mathrm{s}} \tag{15}
\end{equation*}
$$

the lowest $1 a_{1}$ level will not contain the p admixture at all, namely ${ }^{22}$

$$
\begin{equation*}
\psi_{1}^{\prime}=\mathrm{s}+\sqrt{m} x_{\mathrm{s}} \sigma^{(+)} \tag{16}
\end{equation*}
$$

Table II. Changes in Some P-L Bond Lengths (\AA) and LPL Valence Angles (deg) on Coordination $\mathrm{L}_{3} \mathrm{P} \rightarrow \mathrm{X}$

compd	method	ΔR^{a}	$\Delta \phi^{a}$	ref	compd	method	ΔR^{a}	$\Delta \phi^{a}$	ref
PF_{3}	ED	(1.570)	(97.8)	b	$\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$	ED	(1.846)	(98.6)	g
$\mathrm{F}_{3} \mathrm{PO}$	ED	-0.05	3.5	c	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PO}$	ED	-0.04	7.4	h
$\mathrm{F}_{3} \mathrm{P} \cdot \mathrm{BH}_{3}$	MW	-0.03	2.0	d	cis $-\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}_{2} \mathrm{PtCl}_{2}\right.$	X-ray	0.02	4.0	i
$\mathrm{F}_{3} \mathrm{P} \cdot \mathrm{B}\left(\mathrm{BF}_{2}\right)_{3}$	X-ray	-0.06	3.9	e	PPh_{3}	X-ray	(1.828)	(103.0)	j
$\left(\mathrm{F}_{3} \mathrm{P}\right)_{4} \mathrm{Pt}$	ED	-0.02	1.1	f	$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	X-ray	0.01	-0.5	k
$\left(\mathrm{F}_{3} \mathrm{P}\right)_{4} \mathrm{Vi}$	ED	-0.01	0.6	f	$\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RuCl}_{2}$	X-ray	0.02	-1.4	1

[^1]Indeed, already for $\mathrm{H}_{2} \mathrm{~S}$ the $\mathrm{SL}_{l, n}$ spectrum shows practically no sulfur 3 p contribution to the $\psi_{1}\left(1 a_{1}\right)$ level. ${ }^{24}$
On the other hand, from (7^{\prime}) we can anticipate that in the QLP 2a a_{1} the admixture of $\sigma^{(+)}$will be smaller than that of s , so that the QLP $2 a_{1}$ should be a strongly localized p_{z} or hybrid $\mathrm{s}-\mathrm{p}_{z}$ orbital, in complete agreement with experiment ${ }^{8,25.26}$ and ab initio calculations. ${ }^{18}$ specifically on PL_{3} compounds. ${ }^{16,19,20,26,27}$ One can show ${ }^{28}$ that PF_{3} or PCl_{3} should have more s character in the QLP $2 a_{1}$ than will PH_{3} or $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$, again in agreement with the ab initio calculations on these molecules ${ }^{16,20.27}$ (see also eq $17^{\prime}-24$). The simplest way of thinking about it is as follows. Let us consider the perturbation of $\sigma_{\mathrm{L}}{ }^{(+)}$by an interaction with the lower s_{A} and the higher p_{A}. In such a typical case $\psi\left(2 \mathrm{a}_{1}\right)=\sigma^{(+)}-\mathrm{c}_{\mathrm{s}} \mathrm{s}+\mathrm{c}_{\mathrm{p}} \mathrm{p}$, where $c_{s}>0, c_{p}>0$, therefore $\psi\left(2 a_{1}\right)$ has the same nodal structure as (13). If $\sigma^{(+)}$is closer in energy to p_{A} (the PH_{3} case), then $\mathrm{c}_{\mathrm{p}}>\mathrm{c}_{\mathrm{s}}$. If, however, $\sigma^{(+)}$is closer to s_{A} (the PF_{3} case), then $\mathrm{c}_{\mathrm{s}}>\mathrm{c}_{\mathrm{p}}$.

Because the nodal structures (12)-(14) hold for both extreme cases we can consider them as a general pattern for any octet AL_{2} or AL_{3} molecules. ${ }^{25}$ Certainly, the most important result is the nodal structure (13) showing p_{z} bonding and s antibonding. A number of consequences result. First, the total s contribution from the occupied MOs $1 a_{1}(14)$ and $2 a_{1}$ (13) to the A-L bonding should be substantially canceled. As the other contributions to the A-L bond ($1 \mathrm{~b}_{2}$ in $\mathrm{AL}_{2} \mathrm{C}_{2}$, or le in $\mathrm{AL}_{3} \mathrm{C}_{3 c}$) are of pure p character, the $\mathrm{A}-\mathrm{L}$ bonds, as a whole, should be mostly of pand only marginally of s character. This result is confirmed by all quantitative calculations on various octet $\mathrm{AL}_{2}{ }^{2} \cdot 5,6,6,17,18$ and $\mathrm{AL}^{36,18-21,26,27}$ compounds and naturally combines the molecular orbital ${ }^{2,9 b}$ and Pauling's valence bond ${ }^{9 a}$ descriptions.

Second, we can anticipate different changes in molecular geometries of the QLP AL ${ }_{m}$ compounds under their coordination depending on A and L . The various PL_{3} compounds are a good example. In the PF_{3} case where in the $2 \mathrm{a}_{1}$ QLP the antibonding $\mathrm{s}_{\mathrm{A}^{-}}-\sigma_{\mathrm{L}}$ interaction prevails (cf. also ref 16 and 19) the P-F bonds should typically be shortened (strengthened) in $\mathrm{F}_{3} \mathrm{P} \rightarrow \mathrm{X}$ vs. PF_{3}. On the other hand, in the PR_{3} cases. $\mathrm{R}=$ CH_{3} or Ph , where in the $2 \mathrm{a}_{1}$ QLP the bonding $\mathrm{p}_{\mathrm{A}}-\sigma_{\mathrm{L}}$ interaction prevails (cf. also ref 16 and 19) the P-C bonds should typically be lengthened (weakened) or, at least, remain unchanged in $\mathrm{R}_{3} \mathrm{P} \rightarrow \mathrm{X}$ vs. PR_{3}. This prediction (which eventually follows from the relative energies of σ_{L} and s_{A} and $\mathrm{p}_{\mathrm{A}}{ }^{28}$, see above) is confirmed by experiment as seen from Table 11.

Two comments to Table II might be useful. First, the π back-bonding to the PL_{3} ligands (on the antibonding 2 e $\mathrm{MO}^{16,19,26.27}$) should weaken the P-L bonds. This weakening must be biggest for PF_{3} but, as seen from Table 11, it is obviously of secondary importance as compared with the σ
donor-acceptor bonding [cf. PF_{3} vs. $\mathrm{F}_{3} \mathrm{P} \cdot \mathrm{BR}_{3}$ vs. $\left(\mathrm{F}_{3} \mathrm{P}\right)_{4} \mathrm{M}$]. Thus, the observed weakening of the $\mathrm{P}-\mathrm{C}$ bonds is definitely caused by the σ donor-acceptor rather than π back-bonding interactions. These conclusions agree with the photoelectron spectra ${ }^{8,26 b, r}$ and computations. ${ }^{16,19,26,29}$ Second, the observed dependence ΔR vs. $\Delta \phi$ can be understood in terms of all the current qualitative theories, ${ }^{1.9 .10}$ with the only exception cis $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}\right]_{2} \mathrm{PtCl}_{2}$ vs. $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$. These theories assume the same bonding pattern for coordination $L_{3} \mathrm{~A} \rightarrow \mathrm{X}$ regardless of A and L , however, and therefore cannot explain the differences between the PF_{3} and PR_{3} cases. In particular, the VSEPR theory ${ }^{1}$ is good for the former but not for the latter. A comprehensive analysis of the above problems (including peculiarities of $L_{3} \mathrm{P}^{\vee} \mathrm{O}$ and $\mathrm{L}_{3} \mathrm{P}^{\mathrm{V}} \mathrm{S}$ compounds) will be given elsewhere. ${ }^{30}$

Finally, the relationships ($\left.2^{\prime}\right)-\left(8^{\prime}\right)$ permit some seeming contradictions concerning the nature of QLPs to be resolved. Remember that a pure lone pair of the central atom such as $1 b_{1}{ }^{2}$ in $\mathrm{H}_{2} \mathrm{O}$ will be, by definition, localized, unhybridized (pure p_{π}), and nonbonding. A QLP of the central atom should be, by definition, predominantly localized on this atom but the QLP's hybridization and bonding character are not well defined. We saw that the most localized a_{1} orbital is $1 a_{1}$ in $\mathrm{H}_{2} \mathrm{O}$ but $2 \mathrm{a}_{1}$ in PL_{3} so that in octet AL_{2} and AL_{3} molecules both la_{1} and $2 a_{1}$ can, in principle, be considered as QLPs though they have quite different hybrid, nodal, and bonding properties (even within the PL_{3} series). A chemist is interested, however, in the chemically and sterically active QLPs which should, first, have a low ionization potential (IP), and second, be of directional character. Obviously, both conditions lead to $2 \mathrm{a}_{1}$. Let us clarify that the $\mathrm{s}-\mathrm{p}_{z}\left(2 a_{1}\right)$ will concentrate the QLP electron density out of the AL_{m} space while the $\mathrm{s}+\mathrm{p}_{z}\left(1 \mathrm{a}_{1}\right)$ will concentrate it in the AL_{m} space, as shown in Figures 1c, f and $1 \mathrm{~b}, \mathrm{e}$, respectively. Further if a pure lone pair is always nonbonding due to perfect localization. a QLP $2 \mathrm{a}_{1}$ (13) may be bonding, nonbonding, or antibonding depending on the relative values of the opposing s and p contributions. For this last reason the $2 \mathrm{a}_{1}$ (13) can prove to be substantially nonbonding but strongly delocalized, i.e., not a QLP at all. The composition and nodal structure of the $2 \mathrm{a}_{1}$ can result in different changes of the initial $A L_{m}$ molecular properties under coordination $\mathrm{L}_{m} \mathrm{~A} \rightarrow \mathrm{X}$ depending on A , on L (cf. Table II), and on the properties themselves. For instance, the changes in total and s contributions to the A-L bonds, which determine the changes in bond lengths and spin coupling constants, respectively, may be similar or different ${ }^{11-15,30}$ (see below).

While comparing the Lewis basicity of various AL_{2} and AL_{3} molecules we have to bear in mind the very delicate balance between IP and localization and directional properties of the $2 a_{1}$ QLP. Typically, if we gain in the first we lose in the second and vice versa. Therefore, there are not, and cannot be, simple
interrelations between IP and the Lewis basicity of the octet AL_{2} and AL_{3} molecules. For instance, the donor ability of many bulky phosphorus ligands are determined by steric rather than electronic factors. ${ }^{31}$ Additional complications are caused by the nature of the Lewis acids such as $\mathrm{H}^{+}, \mathrm{BL}_{3}$, transition metal fragments ML_{n}, etc. We will consider the above problems in detail elsewhere. ${ }^{30}$

The QLP as a Solution of the Diagonalization Problem. As we start to consider the general model, remember that a pure lone pair exists if and only if we have two identical orbitals, say, $\chi_{1}=\chi_{3}\left[\right.$ see (1)] in three-atom compounds such as XeF_{2} or $\mathrm{H}_{2} \mathrm{CCHCH}_{2}$ (σ or π three-center $30-4 \mathrm{e}$ bonding, respectively). In all χ_{j} are different, at best a QLP can be formed which will be closer to a pure lone pair the closer χ_{1} will be to χ_{3}. The procedure we will follow will be to form two orthonormalized linear combinations, ϕ_{1} and ϕ_{2}, of the orbitals χ_{1} and χ_{3}

$$
\begin{align*}
& \phi_{1}=\mu \chi_{1}+\nu \chi_{3} \tag{17}\\
& \phi_{2}=\nu \chi_{1}-\mu \chi_{3} \tag{18}
\end{align*}
$$

such that

$$
\begin{equation*}
\left(\phi_{2}\left|\chi_{2}\right\rangle=0\right. \tag{19}
\end{equation*}
$$

Here,

$$
\begin{gather*}
\mu^{2}+\nu^{2}=1 \tag{20}\\
\frac{\mu}{\nu}=\frac{\left(\chi_{1}\left|\chi_{2}\right\rangle\right.}{\left(\chi_{3}\left|\chi_{2}\right\rangle\right.} \tag{21}
\end{gather*}
$$

To emphasize again what was stated at the beginning of the paragraph, although ϕ_{2} is orthogonal to χ_{2}, the interaction between the two orbitals, ($\left.\phi_{2}|\mathrm{H}| \chi_{2}\right\rangle$, will not equal zero unless χ_{1} and χ_{3} are identical, in which case ϕ_{2} is a pure lone pair.

In transition-metal complexes $\mathrm{ML}_{m} n \mathrm{~s}$ and ($n-1$)d orbitals are close in energy (and overlapping) so that the $\mathrm{sd}_{z}{ }^{2}$ metal hybrid lone pairs, $\mu \mathrm{s}+\nu \mathrm{d}_{z}{ }^{2}$ in $\mathrm{d}^{8} \mathrm{ML}_{4} D_{4 h}{ }^{12}$ or $\nu \mathrm{s}-\mu \mathrm{d}_{z}{ }^{2}$ in $\mathrm{ML}_{2} D_{\infty h^{11}}{ }^{11}$ (see Table I) are rather good approximations. Similarly, the group ligand orbitals, σ_{ax} and σ_{cq}, in trigonal $\mathrm{AL}_{5} D_{3 h}$ are pentagonal $\mathrm{AL}_{7} D_{5 h}$ bipyramidal complexes are almost degenerate, ${ }^{32}$ so the relevant ligand lone pairs (see Table I) are very close to reality. ${ }^{12,32}$ Thus, the metal $n s(n-$ 1)d hybridization or ligand orbital combinations within a given irreducible representation are usually well justified.

Obviously, for main group sp hybridization, where the $n \mathrm{~s}_{\mathrm{A}}-n \mathrm{p}_{\mathrm{A}}$ splitting is large, the QLP character of ϕ_{2} requires special examination. Let us consider in detail the octet AL_{2} and AL_{3} cases (groups 6 and 5). For $A L_{2}$ and $A L_{3}$ we have the MOs (1^{\prime}) which are obtained from (1)

$$
\psi_{i}\left(i \mathrm{a}_{1}\right)=c_{i s} \mathrm{~s}+c_{i \sigma} \sigma^{(+)}+c_{i \mathrm{p}} \mathrm{p}_{z}
$$

for $\chi_{1}=\mathrm{s}, \chi_{3}=\mathrm{p}_{z}$, and $\chi_{2}=\sigma^{(+)}=(1 / \sqrt{2})\left(\sigma_{1}+\sigma_{2}\right)$ or $(1 / \sqrt{3})\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)$ (see Table I). The (2×2) determinant will involve $\phi_{1}=\mu \mathrm{s}+\nu \mathrm{p}_{z}$ and $\sigma^{(+)}$combining to form a bonding $\psi_{1}\left(\mathrm{a}_{1}\right)$ and antibonding $\psi_{3}\left(3 \mathrm{a}_{1}\right)$ while $\phi_{2}=\nu \mathrm{s}-\mu \mathrm{p}_{2}$ becomes the nonbonding MO $\psi_{1}\left(2 \mathrm{a}_{1}\right)$.

$$
\begin{gather*}
\phi_{1}=\mu \mathrm{s}+\nu \mathrm{p}_{z} \\
\phi_{2}=\nu \mathrm{s}-\mu \mathrm{p}_{z} \\
\left\langle\phi_{2} \left\lvert\, \frac{1}{\sqrt{2}}\left(\sigma_{1}+\sigma_{2}\right)\right.\right\rangle=0 \quad \text { or }\left\langle\phi_{2} \left\lvert\, \frac{1}{\sqrt{3}}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)\right.\right\rangle=0 \\
\frac{\mu}{\nu}=\frac{\left(\mathrm{p}_{z}\left|\sigma_{1}\right\rangle\right.}{\left(\mathrm{s}\left|\sigma_{1}\right\rangle\right.}=\cos \theta_{1} \frac{S_{\mathrm{p} \sigma}}{S_{\mathrm{s}}}
\end{gather*}
$$

where the angles θ_{1} for $A L_{m}$ are shown in Figures 1a,d. For AL_{2}

$$
\begin{equation*}
\psi_{1}=a\left(\mu \mathrm{~s}+\nu \mathrm{p}_{z}\right)+b \frac{1}{\sqrt{2}}\left(\sigma_{1}+\sigma_{2}\right) \tag{22}
\end{equation*}
$$

b

a

e

d

Figure 1. Geometry, enumeration of ligands, and directions of the coordinate axes and $\left(s+p_{z}\right)$ and ($s-p_{z}$) hybrid orbitals for angular $\mathrm{AL}_{2}[(\mathrm{a})$, (b), (c)] and trigonal pyramidal $\mathrm{AL}_{3}[(\mathrm{~d})$, (e), (f)] compounds.

$$
\begin{gather*}
\psi_{1}=\phi_{2}=\nu \mathrm{s}-\mu \mathrm{p}_{z} \tag{23}\\
\psi_{3}=b\left(\mu \mathrm{~s}+\nu \mathrm{p}_{z}\right)-a \frac{1}{\sqrt{2}}\left(\sigma_{1}+\sigma_{2}\right) \tag{24}\\
a^{2}+b^{2}=1 \tag{25}
\end{gather*}
$$

For AL_{3}

$$
\begin{align*}
& \psi_{1}=a\left(\mu \mathrm{~s}+\nu \mathrm{p}_{z}\right)+b \frac{\mathrm{l}}{\sqrt{3}}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) \tag{26}\\
& \psi_{3}=b\left(\mu \mathrm{~s}+\nu \mathrm{p}_{z}\right)-a \frac{1}{\sqrt{3}}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) \tag{27}
\end{align*}
$$

To complete the σ MO model we need to add in the orbitals of the other irreducible representations, p_{y} and $\sigma^{(-)}=$ $(1 / \sqrt{2})\left(\sigma_{1}-\sigma_{2}\right)$ for B_{2} in $\mathrm{AL}_{2} C_{2 v}$ or p_{y} and $\sigma^{(-)}=$ $(1 / \sqrt{6})\left(2 \sigma_{1}-\sigma_{2}-\sigma_{3}\right)$ for E in $\mathrm{AL}_{3} C_{3 c},{ }^{33}$ where two electrons will occupy the bonding MOs ψ_{2} (28) and (30) leaving the antibonding ψ_{4} (29) and (31) vacant

$$
\begin{align*}
& \psi_{2}\left(1 \mathrm{~b}_{2}\right)=e \mathrm{p}_{y}+f \frac{1}{\sqrt{2}}\left(\sigma_{1}-\sigma_{2}\right) \tag{28}\\
& \psi_{4}\left(2 \mathrm{~b}_{2}\right)=f \mathrm{p}_{y}-e \frac{1}{\sqrt{2}}\left(\sigma_{1}-\sigma_{2}\right) \tag{29}
\end{align*}
$$

or

$$
\begin{gather*}
\psi_{2}(1 \mathrm{e})=e \mathrm{p}_{y}+f \frac{1}{\sqrt{6}}\left(2 \sigma_{1}-\sigma_{2}-\sigma_{3}\right) \tag{30}\\
\psi_{4}(2 \mathrm{e})=f \mathrm{p}_{y}-e \frac{1}{\sqrt{6}}\left(2 \sigma_{1}-\sigma_{2}-\sigma_{3}\right) \tag{31}\\
e^{2}+f^{2}=1 \tag{32}
\end{gather*}
$$

Verification of the ModeI. From the general relationship ${ }^{34}$

$$
\begin{equation*}
\sum_{i}^{\text {occ }} c_{i \chi} c_{i \mathrm{~L}}=-\sum_{j}^{\mathrm{unocc}} c_{j x} c_{j \mathrm{~L}} \tag{33}
\end{equation*}
$$

and from the fact that the unoccupied antibonding $\operatorname{MOs} \psi_{3}$ [relationships (12), (24), and (27)] always have the same nodal structure (two nodes) we can conclude that the set (22)-(27) will be good enough to reproduce both s and p contributions to the A-L bond overlap (bond strength). In other words, although ψ_{1} does not contribute at all, ψ_{1} is sufficiently complete and flexible due to the variable coefficients a, b, μ and ν. Furthermore, not only $\psi_{1}\left(1 a_{1}\right)$ and $\psi_{3}\left(3 a_{1}\right)$ but also $\psi_{1}\left(2 a_{1}\right)$ have the correct nodal structures [cf. (12)-(14)].

Remember two discussed aspects of the QLP problem, localization and hybridization. If some $\psi^{\prime}\left(1^{\prime}\right)$ can be considered as the central atom QLP, then the condition of QLP localization will be $c_{i \sigma}{ }^{2} \ll c_{i \mathrm{~s}}{ }^{2}+c_{i \mathrm{p}}{ }^{2}$. With respect to hybridization, if $c_{\text {is }} \gg c_{i \mathrm{p}}$ or $c_{i \mathrm{~s}} \ll c_{i \mathrm{p}}$. one can talk about predominantly lone $n \mathrm{~s}^{2}$ or $n \mathrm{p}^{2}$ pair, respectively. Within the set (22)-(27) this QLP hybridization can be expressed in terms of the coefficients a,
b, μ and ν. Though μ and ν can formally be found from the orthonormalization conditions (20)-(21), their values will eventually depend on the $s_{A}-p_{A}$ energy splitting and the relative energies of $\sigma^{(+)}$vs. s_{A} and p_{A}. Thus, along the series $\mathrm{H}_{2} \mathrm{O}-\mathrm{TeF}_{2}$ or $\mathrm{NH}_{3}-\mathrm{SbF}_{3}$ we will encounter a variety of the extreme and intermediate cases ${ }^{30}$ (see above).

As a test of the model we can consider the ordering of energy levels in AL_{m} molecules in question. From (22)-(32) we obtain the electronic configurations $\psi_{1}{ }^{2}\left(1 \mathrm{a}_{1}\right) \psi_{2}{ }^{2}\left(1 \mathrm{~b}_{2}\right) \psi_{1}{ }^{2}$ $\left(2 a_{1}\right) \psi_{2}^{2}\left(1 b_{1}\right)$ for AL_{2} and $\psi_{1}^{2}\left(1 a_{1}\right) \psi_{2}^{4}(1 \mathrm{e}) \psi_{1}^{2}\left(2 a_{1}\right)$ for AL_{3}, in complete agreement with the photoelectron spectra ${ }^{7,8,19,25,26}$ and quantitative computations ${ }^{6,17-21,26,27}$ on these molecules. Moreover, we can foresee the above discussed peculiarities of the MO compositions, for instance, that in $\mathrm{H}_{2} \mathrm{O} \psi_{1}\left(l a_{1}\right)$ is mainly of s character ($\mu>\nu, a>b$) or that in $\mathrm{AL}_{3}, \mathrm{~A}=\mathrm{N}, \mathrm{P}$, As, Sb , the HOMOs $2 \mathrm{a}_{1}{ }^{25}$ are substantially of p character, ${ }^{8.19,26}$ as for ψ_{1} (23) we have again $\mu>\nu$. Let us clarify that in our model, because of the nonbonding character of $\psi_{\overline{1}}$, the main difference between the discussed extreme cases, the $\mathrm{H}_{2} \mathrm{O}$ and PF_{3} ones, is in the a and b coefficients, namely, $a \gg b$ and $a \simeq b$, respectively.

Application to Substituent Effects on Bond Lengths. Now we are ready to attack substitution effects on bond lengths in the AL_{m} compounds in question. From (22)-(32) we see that the substitution of $\mathrm{L}_{(1)}$ by L^{\prime} will perturb four orbitals $\left(\psi_{1}, \psi_{2}\right.$, ψ_{3}, and ψ_{4}) with four electrons and, to first-order perturbation theory, can be reduced to the $4 \mathrm{o}-4 \mathrm{e}$ case considered earlier. ${ }^{11}$ Introducing again the difference in ihe ligand σ orbital energies, $\delta \alpha^{\prime}$ (34), as a perturbation

$$
\begin{equation*}
\delta \alpha^{\prime}=\left(\sigma_{\mathrm{L}^{\prime}}|H| \sigma_{\mathrm{L}^{\prime}}\right\rangle-\left(\sigma_{\mathrm{L}}|H| \sigma_{\mathrm{L}}\right\rangle \tag{34}
\end{equation*}
$$

we obtain for the change in bond overlap population, $N(\mathrm{~A}-\mathrm{L})$, in angular ALL^{\prime} (see Figure la)

$$
\begin{align*}
& \frac{\delta N(\mathrm{~A}-\mathrm{L})}{\delta \alpha^{\prime}}=-\frac{a b \mu}{2 \sqrt{2}}\left[\left(\frac{f^{2}}{E_{23}}-\frac{e^{2}}{E_{14}}\right)-\frac{b^{2}-a^{2}}{E_{13}}\right] S_{\mathrm{s}}- \\
& \frac{a b \nu \cos \theta}{2 \sqrt{2}}\left[\left(\frac{f^{2}}{E_{23}}-\frac{e^{2}}{E_{14}}\right)-\frac{b^{2}-a^{2}}{E_{13}}\right] S_{\mathrm{p} \sigma}+ \\
& \frac{e f \sin \theta}{2 \sqrt{2}}\left[\frac{f^{2}-e^{2}}{E_{24}}-\left(\frac{b^{2}}{E_{14}}-\frac{a^{2}}{E_{23}}\right)\right] S_{\mathrm{p} \sigma} \tag{35}
\end{align*}
$$

where $S_{\mathrm{s}}=\left(\mathrm{s}\left|\sigma_{1}\right\rangle, S_{\mathrm{p} \sigma}=\left\langle\mathrm{p}_{z} \mid \sigma_{1}\right\rangle / \cos \theta=\left(\mathrm{p}_{y}\left|\sigma_{1}\right\rangle / \sin \theta\right.\right.$

$$
\begin{equation*}
E_{i j}=\epsilon_{j}\left(\psi_{j}\right)-\epsilon_{i}\left(\psi_{i}\right)>0 \tag{36}
\end{equation*}
$$

For trigonal pyramidal $\mathrm{AL}_{2} \mathrm{~L}^{\prime}$ we have (see Figure 1 d)

$$
\begin{array}{r}
\frac{\delta N(\mathrm{~A}-\mathrm{L})}{\delta \alpha^{\prime}}=-\frac{a b \mu}{3 \sqrt{3}}\left[\left(\frac{f^{2}}{E_{23}}-\frac{e^{2}}{E_{14}}\right)-\frac{b^{2}-a^{2}}{E_{13}}\right] S_{\mathrm{s}}- \\
\frac{a b \nu \cos \theta_{1}}{3 \sqrt{3}}\left[\left(\frac{f^{2}}{E_{23}}-\frac{e^{2}}{E_{14}}\right)-\frac{b^{2}-a^{2}}{E_{13}}\right] S_{\mathrm{p} \sigma}- \\
\frac{2 e f \cos \theta_{2}}{3 \sqrt{6}}\left[\frac{f^{2}-e^{2}}{E_{24}}-\left(\frac{b^{2}}{E_{14}}-\frac{a^{2}}{E_{23}}\right)\right] S_{\mathrm{p} \sigma} \tag{37}
\end{array}
$$

which is similar to (35).
The expressions in square brackets in (35) and (37) are exactly the same as those found earlier for linear ALL' and trigonal planar $\mathrm{AL}_{2} \mathrm{~L}^{\prime}$ where A is of the highest oxidation state, $\mathrm{A}(\mathrm{HOS})$ [cf. the relationships (15), (35), and (37) in ref 11]. In the A (HOS) case we always have ${ }^{11}$

$$
\begin{equation*}
\frac{\delta N(\mathrm{~A}-\mathrm{L})}{\delta \alpha^{\prime}}=-C_{\mathrm{s}} S_{\mathrm{s}}+C_{\mathrm{p} \sigma} S_{\mathrm{p} \sigma}, C_{\mathrm{s}}>0, C_{\mathrm{p} \sigma}>0 \tag{38}
\end{equation*}
$$

where the negative s contribution is typically (but not always!) larger in absolute value than the positive p contribution. Remember that in the $\mathrm{A}(\mathrm{HOS})$ cases there is only one p contribution. ${ }^{11}$

In the present A (NHOS) cases the analysis of the s and p contributions, their signs and relative values, is more compli-
cated. The fact is that the $\mathrm{A}(\mathrm{HOS})$ atoms are rather electropositive beginning elements such as $\mathrm{Hg}, \mathrm{Be}, \mathrm{B}$, etc. but the $\mathrm{A}(\mathrm{NHOS})$ atoms are rather electronegative ending elements such as O, N, etc. In both cases we have ${ }^{11}$

$$
\begin{equation*}
E_{14}>E_{13}>E_{23}, E_{14}>E_{24}>E_{23} \tag{39}
\end{equation*}
$$

However, if in the A(HOS) case we always have ${ }^{34}$

$$
\begin{equation*}
f>e, f^{2}-e^{2}>b^{2}-a^{2} \gtrless 0, e f<a b \tag{40}
\end{equation*}
$$

(from (39)-(40) one can easily obtain (38) ${ }^{11}$); in the $\mathrm{A}(\mathrm{NHOS})$ case the corresponding interrelations among the coefficients a, b, e, and f will depend on the nature of A and L.

For the most electronegative ligands L , for instance, in PF_{3}, we typically have the same relationships (40), but for the most electropositive L and most electronegative A , for instance, in $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, and PH_{3}, we typically have

$$
\begin{equation*}
f \leq e, b \ll a, a^{2}-b^{2} \gg e^{2}-f^{2} \gtrless 0, e f>a b \tag{41}
\end{equation*}
$$

One can show ${ }^{28}$ however, that the relationships (40) and (41) usually result in the same signs of the square bracket expressions in (35) and (37) so that we have two opposite p contributions, negative from p_{z} and positive from $\mathrm{p}_{y} .{ }^{35}$ Because the latter is typically bigger in absolute value ${ }^{28}$ the expression (38) remains typically valid for the $\mathrm{A}(\mathrm{NHOS})$ cases in question, too. Thus, we come to the conclusion that for a better donor substituent $\mathrm{L}^{\prime}\left(\delta \alpha^{\prime}>0\right)$ the s contribution to $N(\mathrm{~A}-\mathrm{L})$ will be negative but the p one will be positive (and vice versa for a better acceptor L'), justifying, analytically, Bent's rules ${ }^{10}$ for these A (NHOS) compounds in the same way as for the $A($ HOS $)$ compounds. ${ }^{11}$ The relative values of both the s and p contributions in the $\mathrm{A}(\mathrm{NHOS})$ cases will be smaller because the sone is multiplied by $\mu<1$ and the p one has opposing p_{z} and p_{y} terms.

We have found ${ }^{11}$ that in planar trigonal and tetrahedral compounds $\mathrm{AL}_{m-k} \mathrm{~L}_{k}{ }^{\prime}, m=3$ or $4, k=0-m$, changes in the s, p, and total contributions to $\delta N(\mathrm{~A}-\mathrm{L}) / \delta \alpha^{\prime}$ should be monotonic (additive, to first order) as k increases. Obviously, the same holds for trigonal pyramidal compounds $\mathrm{AL}_{3-k} \mathrm{~L}_{k}{ }^{\prime}$. Two examples of the bond-length changes confirming our model conclusions are the $\mathrm{O}-\mathrm{F}$ bond length increase from 1.405 to $1.442 \AA^{36}$ from OF_{2} to HOF and the $\mathrm{P}-\mathrm{F}$ bond lengths along the series $\mathrm{PF}_{2} \mathrm{~L}^{\prime}, \mathrm{L}^{\prime}=\mathrm{F}, \mathrm{NH}_{2}, \mathrm{PF}_{2}, \mathrm{PH}_{2}$, and $\mathrm{H}(1.570,1.581$, $1.587,1.587$, and 1.582 , respectively ${ }^{36}$). Other examples can be found in recent reviews. ${ }^{36,37}$

Conclusion

The perturbation model gives a qualitative picture of various aspects of the electronic structures of octet AL_{2} and AL_{3} molecules which is simple, more general, and more reliable than any current qualitative model. We have developed a simple orthogonalization scheme that allows us to consider lone pairs in the perturbation manner and applied the model to bond-length changes upon substitution. It was shown that in many cases $\mathrm{A}\left(\mathrm{NHOS}^{2} \mathrm{~L}_{m}\right.$ compounds will behave the same under substitution as do $\mathrm{A}(\mathrm{HOS}) \mathrm{L}_{m}$ compounds, in following Bent's rules. for example. An equally important conclusion, however, is that substituent effects in $\mathrm{A}(\mathrm{NHOS}) \mathrm{L}_{m}$ compounds depend upon the details of the s and p hybridization on A so that we can anticipate more varied substitution effects. ${ }^{30}$ The regularities of spin coupling constants in some A (NHOS) $\mathrm{L}_{m-k} \mathrm{~L}_{k}^{\prime}$ compounds, interpreted on the basis of our model in another paper, ${ }^{15}$ will provide a good example of such variety.

Acknowledgments. We are indebted to Professor R. Hoffmann for the stimulating discussions and valuable remarks. We would like to thank R. Ludgate for the careful typing. This
research was supported by the National Science Foundation through Research Grant CHE 76-06099.

References and Notes

(1) R. J. Gillespie, "Molecular Geometry", Van Nostrand-Reinhold, Princeton, N.J., 1972
(2) (a) M. B. Hall, Inorg. Chem., 17, 2261 (1978); (b) J. Am. Chem. Soc., 100, 6333 (1978), and references cited therein.
(3) A typical example is the orbital picture book of Jorgensen and Salem where the $1 \mathrm{~b}_{1}$ (pure $\mathrm{p}_{\pi}{ }^{2}$) and $2 \mathrm{a}_{1}$ pictures are labeled n but the $1 \mathrm{a}_{1}$ as $\sigma_{\mathrm{OH}_{2}}$ (designated as $3 a_{1}$ and $2 a_{1}$, respectively): W. L. Jorgensen and L. Salem, "The Organic Chemist's Book of Orbitals'", Academic Press, New York, 1973, p 70.
(4) For instance, the many-body Green's function method calculations indicate that the breakdown of the single-particle (molecular orbital) picture of ionization for inner valence electrons is a quite general phenomenon, occurring for most and even the simplest molecules such as $\mathrm{H}_{2} \mathrm{~S}$ and PH_{3} : W. Domcke, L. S. Cederbaum, J. Schirmer, W. von Niessen, and J. P. Mayer, J. Electron Spectrosc. Relat. Phenom., 14, 59 (1978), and references cited therein.
(5) W. J. Hunt, P. J. Hay, and W. A. Goddard III, J. Chem. Phys. 57, 738 (1972)
(6) C. R. Brundle, M. B. Robin, N. A. Kuebler, and H. Basch, J. Am. Chem. Soc., 94, 1451 (1972)
(7) A. W. Potts and W. C. Price, Proc. R. Soc. London. Ser. A, 326, 165 (1972).
(8) A recent review of both experimental (spectroscopic) and computational studies of various QLP compounds: V. I. Vefedov, "Stroenye Molekul i Khimicheskaya Svyaz", Vol. 3, Ser. "ltogi Nauki", Viniti, Moscow, 1975.
(9) (a) L. Pauling, 'The Nature of the Chemical Bond", 3rd ed., Cornell University Press, Ithaca, N.Y., 1960; (b) C. A. Coulson, "Valence", 2nd ed., Oxford University Press, London, 1961.
(10) "Lone-pair electrons are regarded as electrons in bonds to very electropositive atoms": H. A. Bent, Chem. Rev., 61, 275 (1961).
(11) E. Shustorovich, J. Am. Chem. Soc., 100, 7513 (1978).
(12) (a) E. Shustorovich, J. Am. Chem. Soc., 101, 792 (1979); (b) Inorg. Chem., 18, 1030 (1979).
(13) E. Shustorovich, Inorg. Chem., 18, 1039 (1979).
(14) E. Shustorovich and P. A. Dobosh, J. Magn. Res., submitted.
(15) E. Shustorovich, Inorg. Chem., in press.
(16) I. Hillier and V. R. Saunders, Chem. Commun., 316 (1970).
(17) F. O. Ellison and H. Shull, J. Chem. Phys., 23, 2348 (1955).
(18) W. G. Richards, T. E. H. Walker, L. Farnell, and P. R. Scott, "Bibliography of ab initio Molecular Wave Functions. Supplement for 1970-1973', Clarendon Press, Oxford, 1974.
(19) P. J. Basset, D. R. Lloyd, I. H. Hillier, and V. R. Saunders, Chem. Phys. Lett., 6, 253 (1970).
(20) M. F. Guest, I. H. Hillier, and V. R. Saunders, J. Chem. Soc., Faraday Trans 2, 68, 867 (1972).
(21) U. Kaldor and I. Shavitt, J. Chem. Phys., 45, 888 (1966).
(22) The same approximation has been used by Pople and Santry ${ }^{23}$ in their theory of spin coupling constants ${ }^{1} K(A-F)$. For a further discussion see ref 14 and 15 .
(23) J. A. Pople and D. P. Santry, Mol. Phys., 8, 1 (1964).
(24) E. D. Gluskin, Thesis, 1974, cited in ref $8, p 74$.
(25) (a) This conclusion is especially clear from comparison of the relevant adiabatic ionization potentials (IP): 32.2, 22.2,21.0, and 18.6 eV for $1 \mathrm{a}_{1}$ and $12.6,10.5,9.9$, and 9.1 eV for $1 \mathrm{~b}_{1}$ in $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$, and $\mathrm{H}_{2} \mathrm{Te}$, respectively. ${ }^{7}$ Similarly, the vertical IPS are 27.0 and 19.0 eV for $1 \mathrm{a}_{1}$ and 16.0 and 13.4 eV for 1 e in NH_{3} and $\mathrm{PH}_{3} .{ }^{7}$ The same conclusions hold for $\mathrm{AHai}_{m}{ }^{250,26}$ (b) Unlike AH_{m}, in AHal_{m} molecules there are more $\mathrm{a}_{1} \mathrm{MOs}$ mainly corresponding to the ligand group orbitals. Besides calculations, $6,16,18-20,26 c, e, 4$ this can be confirmed by various experimental data, first of all, by comparison of the relevant vertical IPs. For instance, for NF_{3}, PF_{3}, and AsF_{3} they are $19.71,18.57$, and 17.22 eV , for $\mathrm{PCl}_{3}, \mathrm{AsCl}_{3}$, and $\mathrm{SbCl}_{3} 14.23,13.75$, and 13.13 eV , for $\mathrm{PBr}_{3}, \mathrm{AsBr}_{3}$, and $\mathrm{SbBr}_{3} 13.09,12.75$, and 12.26 eV , for $\mathrm{Pl}_{3}, \mathrm{Asl}_{3}$, and $\mathrm{Sbl}_{3} 11.86,11.56$, and 11.25 eV , respectively, ${ }^{26}$ very close within each group and close to the halogen values ${ }^{8}$ (with correction for the A-Hal bond polarity). So we can consider the same set (12)-(14) for all octet $A L_{2}$ and $A L_{3}$ molecules. See further details in ref 15.
(26) (a) P. A. Cox, S. Evans, A. F. Orchard, N. V. Richardson, and P. J. Roberts, Faraday Discuss. Chem. Soc., 54, 26 (1972); (b) A. W. Potts, H. J. Lempka, D. G. Streets, and W. C. Price, Philos. Trans. R. Soc. London, Ser. A, 268, 59 (1970); (c) J. L. Berkovsky, F. O. Ellison, T. H. Lee, and J. W. Rabalais, J. Chem. Phys., 59, 5342 (1973); (d) P. J. Bassett and D. R. Lloyd, J. Chem. Soc., Dalton Trans., 248 (1972); (e) T. H. Lee and J. W. Rabalais, J. Chem. Phys., 60, 1172 (1974); (f) I. H. Hillier, V. R. Saunders, M. J. Ware, P. J. Basset, D. R. Lloyd, and N. Lynaugh, Chem. Commun., 1316 (1970).
(27) J. M. Lehn and B. Munsch, Mol. Phys., 23, 91 (1972).
(28) E. Shustorovich, unpublished results (available upon request).
(29) For instance, although the $2 \mathrm{a}_{1}$ (13) orbital of PF_{3} " is 73% located on the phosphorus atom, it has a significant P-F antibonding contribution involving phosphorus $3 s$-fluorine $2 p$ orbitals. On coordination this antibonding effect is much reduced owing to the depletion of phosphorus $3 s$ orbital population, contributing to the observed decrease in bond length." 19
(30) E. Shustorovich and P. A. Dobosh, Inorg. Chem., to be submitted.
(31) C. A. Tolman, J. Am. Chem. Soc., 92, 2956 (1970).
(32) E. Shustorovich, Inorg. Chem., 17, 2648 (1978).
(33) The second component of the Erepresentation, p_{x} and $(1 / \sqrt{2})\left(\sigma_{2}-\sigma_{3}\right)$, is not needed for the ensuing consideration.
(34) See, for instances, Appendixes 1 and 2 in ref 11.
(35) These opposing contributions arise from the fact that the p orbitals are odd functions. For even functions such as the d orbitals the analogous contributions are of the same sign, for instance, from d_{z}^{2} and $d_{x}{ }^{2}-y^{2}$ in d^{8} $M L_{3} L^{\prime}{ }^{12}$
(36) Landolt-Börnstein, "New Series", K.-H. Hellwege, Ed., Group II, "Atomic and Molecular Physics", Vol. 7, "Structural Data of Free Polyatomic Molecules", Springer-Verlag, West Berlin, 1976.
(37) "Molecular Structure by Diffraction Methods", The Chemical Society, Burlington House, London: (a) Vol. 1, 1973; (b) Vol. 2, 1974; (c) Vol. 3, 1975; (d) Vol. 4, 1976.

[^0]: * Please address correspondence to this author al Chemisiry Division, Research Laboratories, Easiman Kodak Co., Rochesier N.Y. 14650.

[^1]: ${ }^{a} \Delta R(\phi)=R(\phi)_{L_{3} \mathrm{PX}, \mathrm{av}}-R(\phi)_{\mathrm{PL}_{3}}$. The values of $R(\phi)_{\mathrm{PL}_{3}}$ are given in parentheses. ${ }^{b}$ Y. Morino, K. Kuchitsu, and T. Moritani, Inorg. Chem.,
 (1967). ${ }^{e}$ B. G. DeBoer, A. Zalkin, and D. H. Templeton, Inorg. Chem., 8, 836 (1969). J. Marriott, J. A. Salthouse. M. J. Ware, and J. M. Freeman, Chem. Commun., 595 (1970). ${ }^{8}$ L. S. Bartell and L. O. Brockway, J. Chem. Phys., 32, 512 (1960). ${ }^{\text {h }}$ H. K. Wang, Acta Chem. Scand., 19, 879 (1965). ' G. G. Messmer, E. L. Amma, and J. A. Ibers, Inorg. Chem., 6, 725 (1967). J J. J. Daly, J. Chem. Soc., 3799 (1964). ${ }^{k}$ B.-T. Cheng, C. D. Cook, C. H. Koo, S. C. Nyburg, and M. T. Shiomi, Acta Crystallogr., Secl. B, 27, 1904 (1971). 'S. J. LaPlaca and J. A. Ibers, Inorg. Chem., 4, 778 (1965).

